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ABSTRACT

.-. Inthi.s-repOt -an approach is proposed for the construction of Liapunov

functions for certain types of second and third-order nonlinear- systems. If

the system is described by a vector differential equation) "

wh.r-ek-. -k -a-e-paranetL-rs-of-the-s¥ tem, a Liapunov function

V = x'"Px--(P is ae-onstant--natrix ") which ensures stability of the linear system

for all values of-k.- is called a common Liapunov function (. CLF ) in

the given range. , While it may prove difficult to determine such a CLF . a

Liapunov function n_1,i.. _ ay be selected to ensure the stability

of the linear system over the entire range of the parameters. Under certain

conditions, this Liapunov function may be easily modified for use as a Liapunov

function for a nonlinear system in which the,.ki.s are functions of the state

variables.

Using this approach, sufficient conditions are determined for the

stability of a differential equation of--t-heform - - "--

in terms of the bounds on certain functionsdr-i.ved-from- -f-, .g. and.--h .

i m ni -1-



STABILITY OF CERTAIN NONLINEAR DIFFERENTIAL EQUATIONS

USING THE SECOND METHOD OF LIAPUNOV

by

Roger M. Goldwyn and Kumpati S. Narendra

Division of Engineering and Applied Physics

Harvard University, Cambridge, Massachusetts

I. INTRODUCTION

In recent years considerabl interest has been shown in the study of

the stability of dynamical systems using the second method of Liapunov.

Using this approach, the stability of a dynamical system is assured by the

determination of a positive definite function V(x) whose derivative with

respect to time is negative definite. The conventional approach is one of cut

and try where a positive definite function V(x) is chosen as a candidate for

a Liapunov function and the parameters of the system are adjusted to make

V (x) negative definite. While systematic ways of generating Liapunov

functions do exist for linear time-invariant systems (yielding Routh-Hurwitz

conditions implicity), the generation of such functions for nonlinear systems

is more difficult.. Recently, the "variable gradient method" [Ref. 3 ] was

introduced as a systematic way of generating Liapunov functions. While this

approach may, in principle, be used for any order system, in practice, even

for a third-order system, it becomes fairly involved, since no set procedure

exists for the choice of the elements of the gradient to satisfy the above

conditions.

. w -1-
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In this report a method related to the concept of a common Liapunov

function for a linear system is presented for obtaining Liapunov functions for

nonlinear systems of low order-.. Since ,for a linear system, it is possible to

derive necessary and sufficient conditions for stability, the present approach

relates the nonlinear problem to a corresponding linear problem for. which

.stability conditions are well known. If a linear system is described by a set

of differential equations = F x , V(x).= x'Px is a Liapunov function if

O is positive definite where V (x) X F'P + P F] x = - xtQx . While

e very positive definite P need not yield a positive definite _ , the solution

of the equation

*F'P + PF =-Q

for any positive definite Q must yield a positive definite P if the system is

stable. This important result is used throughout the development of the

present report.

II. COMMON LIAPUNOV FUNCTIONS

Consider the linear system of equations

= Fx (1)

where F is a constant (n x n) matrix and x an (n x I) vector. Let F

be dependent linearly on a parameter k where k As assumed to be in the

range

k < k <

If V(x) = xP x where P is a positive definite (or > 0) matrix is considered

as a candidate for a Liapunov function

(x) - x'Qx (2)
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where

Q = F'P + PF (3)

If Eq. 1 is asymptotically stable in the given range, then for any symmetric

Q> 0 the unique solution of Eq. 3 for P yields a P> 0 . Since .F F (k)

the resulting P will,in general,be a function of k -i. e., P = P(k) . Eq. 3

may be considered as a mapping of the s:et M of positive definite matrices

into the set t P(k)t of positive definite matrices. If there exists a matrix P:

which is a member of P(k such that

Q(kT) = - [F' (k).P + P F (k) ] (4)

is positive definite for all k in the given range, then

V* (x) = X,_P*x (5)

is a Liapunov function for Eq, 1 and will be termed a common Liapunov

function,(CLF) in the range ( k < k <) [Ref. 1].

A. CLF for First-Order System

Consider the first-o.rder system shown in Fig. 1

kit s -a

Figure 1. First-Order System
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The system may be described by the equation

:k =ax - kx (6)

Consider the function

px2 (7)

Then

r = 2px [ ax - kx] ?_p a -k).x = -qx 2 (8)

-It is clear that, Eq. 6 is asymptotically stable for k > a or, for any q > 0

pof Eq. 7is >0 inthe region k>k>a In order to obtaina CLF in

the given range, p must be chosen independent of k

Choosing

p = (k-a) (9)

.V =.(k - &)x is a CLF for the system in the range k.> a since

2(k a) (a- k) x qx q > 0 (10)

If k = k.(x), V = (k - a.)x may still be considered as a CLF if

kMin[k(x)], and k>a since
x

V= 2 (_ - a) (a - k(x))x < 0 (11)

The nonlinear equation is asymptotically stable in the large for k > a

This simple example indicates how,for certain nonlinearities,a CLF

for a linear system may also be used as a Liapunov function for the nonlinear

sys tern.
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B. CLF for Second-Order System

The simple example of the preceding section was presented to indicate

the first step in an approach that might hopefully yield a logical procedure

for the derivation of results for a, third-order system. The difficulties of such

an approach become obvious even when considering a simple second-order

system (Fig. 2).

l x
2 1-f(x) ; • z --

s +as +b

Figure 2. A Second-Order System

The second-order system shown in Fig. 2 may be represented by the

set of equations

x - x

A = - k(xl) xl - ax2

where k(x)= b + f(x I ) In terms of Eq. 1

1 (13)

k(x) -a

When k is treated as a parameter, the range of interest is k >0 [For

k = 0 one of the eigenvalues is zero. so that the system is stable, but not

asympotically stable.]
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If V=x'Px, then V = -x' Qx where

Q(k) = 2,kP z 2  kpZZ - pl1 + apl 2
(14)k~pzz - plI + p,2 'aP22 - 2plz

If a common Liapunov function V exists, it must be possible .to select P

from Q (0), since k.= 0 lies in the allowable range of k

Qo) = ap 1 2  l

apl, -Pll ? (ap22 - P12j

Q (0) can only be positive semi-definite and, hence, one must select

q12 ='q2 l = 0 or

aP1 2 - p11  (16)

Hence,

kp2 2 (ap22 - p 1 2
1

.For positive definiteness of Q (k) it is necessary that

(i) p12 ap 2  p12 > 0'Z (18)
(ii) det Q (k) q(k) > 0

q (k) k2 p2z2 + 4kpl, (ap 22 - p12 ) (19)
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It should be observed that it is impossible to get a CLF of the assumed

quadratic type for all k > 0 , since for some value of k, q(k) must become

negative. The maximum value of k for which a CLF may be determined is

given by

4p1 2 (aP2 2 - P12)
2 '(20)

P2

Any matrix P which satisfies conditions Eqs. 16 and 18 is positive

definite for k, a > 0 . In particular, it is of interest to select a P which is

independent of k, since x IP x is then a Liapunov function of the nonlinear

system.

Since P is to be a constant matrix, selecting arbitrarily p., = 2

and maximizing Eq. 20, pl I a and

V = x' a2 a x

La 221(21)a 2

.is a CLF for the range 0 < k <k = a and indicates stability of the nonlinear

system when k = k(x I ) .

C. The Liapunov Function V = x'P(k) x

The inability to obtain a CLF of the. assumed quadratic form (x'Px)

for the linear problem in the entire range k (x, ) > 0 is a serious drawback

to the method. The difficulty may arise due to the restrictive nature of the

definition of a CLF , i. e., the assumption that V (x) is a..quadratic form.

The off-diagonal term kp2 2 of Eq. 17 is responsible for the upper bound on k.

Additional freedom may be obtained by permitting p1 1 to be linear in k, i. e.,

Pil I c + vk (22)
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where c and v are constants. Thus, Q (k) of Eq. 14 may be expressed as

Q (k) -- 2k P12 k P2 2 - c- vk+aP12

I 1 (23)
kP - -. vk +aP 2ap 2 2 - 2p 1 2

Since k.= 0 lies in the allowable range, it is necessary that

c aP 1 2  (24)

With Eq. 24,

q(k) det (k) (25)

becomes

q(k) = (k.p 2 2 - vk) 2 + 4kpi 2 (ap 2 2 -,p 1 2 ) (26)

If one selects

P22 (27)

then q (k) > 0 implies no upper bound on k as Eq.. 20 did, since
q(k) = 4kpl 2 (ap 2 2 - p12 .(28)

Choosing p 2 2  2 and p1 2 = a

2
q (k) = 4ka (29)

The elements of the P matrix are

p 1l = a 2 + 2k , P 1 2 
= a , p22  2 (30)

The procedure followed so far is to select Q (k) in such a manner

as to be least restrictive on the parameter k . Since *Q (k) is positive

definite for all k> 0 , P(k) must also be positive definite for all k.> 0 , since

it is merely the solution of Eq. 3 for this specific example.
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V(x)=x' aa  a +2kx 1
2 (

a 2

Sx' P x + 2kx 1
2  (32)

where Po is a constant matrix independent of k.. For k = k (x I ) the second

term in V (x) may be replaced by

xl

4 Y uk(u) du (33)

0

so that,

xI

V(x) =x P x+ 4 Y uk(u) du (34)

0

and

V (x) =X Q(k).x

where

Q(k)= ak 0- 2 a](35)

It is important to realize what the modification of Eq. 34 has accomplished

and under what conditions such a modification is possible. Since the linear

system is asymptotically stable for k > 0, any Q (k) > 0 must yield a

P(k) > 0 . In the second-order system considered above, P (k) could

be written as P -which is independent of k - together with a matrix which has
-0
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all elements zero except the element in the first row and first column which is

.2k . In replacing Eq. 32 by 34 it is necessary that k be a function of x,

only since the time derivative of Eqs. 32 and 34 yield identical Q's considered

as functions of k . Further, for k > 0 Eqs. 32 and 34 also obey

V (x) > x' P x (36)

P is a positive-definite matrix since it is a solution of Eq. 15 for k = 0-O

Hence, V (x) of Eq. 34 is a positive-definite function.

D. Generalization

The results obtained in the preceding section may be generalized to

the case of a system with several parameters kl, k 2 , -. k . For the linear• " m

system one -can attempt to find a Liapunov function of the form

m

V(x) = x' - 0 x + Z v.k.x 2 1 2 (37)

i=l

where P is independent of the k.'s and v. are constants (i=l---M, m <n).
0 ' 1 1

For the nonlinear system, if k i = ki (xi) , the Liapunov function may be

modified to
X.

m 1

V(x) =x -P x + 2 vi  ki(u) u du (38)

i=l 0

The total time derivative of Eqs. 37 and 38 yield identical Q's as functions

of the k.'s1-
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Further, m

V(x)>x' P x + v. kQ x. (39)
i= 1

whe re

1 ",
1(40)

Min [k. (x) vi > 0x i

Eq. 39 is clearly greater than zero, .sihce it is a special case of Eq. 37 which

is greater than zero. ( 1 a I[ / 0 ).

It is also possible to make a further generalization using LaSalles.

extension [2] of Liapunov's theorem. According to LaSalle's theorem, it is

permissible for V < 0 as long as r does not vanish identically on a

trajectory. This implies that Q may be chosen to be only positive semi-

definite. For the second-order system of Eq. 23, if

_ (1)L 4 
(41)

then,

pl = c + vk , Pz= 0 , 2a P., = 4a (42)

and, hence,

c = 0, v = p 2 2 , P2 2 
= 2 (43)

For the nonlinear case we have the Liapunov function

xl

V(x) = 4 uk(u) du + 2x 2  (44)

and

V(x)- - 4ax 2 (45)
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Hence, even for the case when Q ( k) is only positive semi-definite the

remarks of the preceding .sections apply.

E. Summary

The results of this section may be summarized as follows: :Consider

.the differential equation * = F x which depends linearly on parameters

k1 k 2 --- km  If the solutions of the equations are stable for ki < ki i<i

1. V x'P (kl -kIn) x is a Liapunov function if P

is the. solution of the equation

F, k + P F(k 1 , ... k )= - Q(k 1 , ---km) (46)

2. If a Q> 0 can. be selected such that P is independent

of the ki's, V (x) = x' P x is a common Liapunov function

in the range k. <k.<k. and, consequently, for the nonlinear
1 1 1

system where ki = ki (x). However, in most cases-sucha

Liapunov function can rarely be obtained.

3. A modification (which may be used for the nonlinear system)

is possible if ki = ki (xi..). In such a case if a .Q > 0 is

selected. so that the. solution of Eq. 46 yields a .P (ki, .... kin)

such that p.. is a constant for i /j and pii is.a linear
1J

function of ki , the Liapunov function for the nonlinear

systemisas shown in Eq. 38 . It is greater than zero for

[- 11 / 0 as it may be bounded as in Eq. 39 -by a quadratic

form coming from the solution of Eq. 46 for a particular value

of the constants k. in the allowable range.
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F. Conclusion

The procedure presented in this section is seen to be similar to the

"variable gradient method" [3] developed recently. In the conventional

approach a V (x) > 0 is selected as a candidate for a Liapunov function and

the conditions the parameters of the system have to satisfy to make 4 (x) <0

are determined to establish the stability conditions. In the "variable gradient

method" the gradient VV of V is chosen to make 4 = VV'k negative

definite. n (n-i)curl conditions have to be satisfied by VV to make it

the gradient of some potential function V (x) . One must then insure that

V(L) > 0 for 1x 1 / 0

In the approach presented in this section, the nonlinear problem is

related to the corresponding linear problem (when all the parameters are

constant) for which the stability conditions are known. By selecting a

SLiapunov function for the linear problem and using the procedure indicated

previously, one is assured that V(x) is positive and ( (x) negative

definite even for the nonlinear system.

In the following sections, the above approach is applied to several

problems. Modifications to the procedure are also suggested - always

insuring that the conditions for the stability of the nonlinear system reduce

to the Routh-Hurwitz conditions when the parameters are constant.
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III. THE SECOND-ORDER SYSTEM

In this section) conditions are obtained for the stability of certain

second-order differential equations, The first two results have been discussed

by other authors [2] but are included here for convenience, The conditions

obtained for the problem in. s.ection C arehopefully,.new and are less

restrictive than those known to the authors.

A. + f(x, ic)+ g(x) x = 0 (47)

The usual state vector representation.for Eq, 47 with x =x is

X1 =x 2

(48)
x Z  'gx1 - fx z

For this case

Q_ (f, g) = 9gP1 2 gP 22 - pll + fP 1 2

(49)

9P22 - Pll + 'fp 1 2  2fP2Z -2

For. f and g constant the Routh-Hurwitz conditions demand that

f, g >, 0 for stability or f, g > 0 for asymptotic stability. Hence, f = 0 may

be assumed to be in the allowable range.

Q ( g.) =2gp12 gP 2 2 -Pl 1

(50)

9P22 - Pl I 2 lz 2 j
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Since for g > 0 Q (0, g) can never be positive definite, one must take

(O,g)- 0 so that

P1 2  0 (51)

P1 1 = P2 2 g (52)

;Since g = g (x 1 ) and pz2 is assumed to be a-constant condition,Eq. 512 can

.be satisfied. With Eqs. 51 and 52 , Eq. 50 reduces to

- (53)
0 2fp 2 2 J

so that one may take q2 2 = 2f and, .hence, P22 =1 . Thus, for Eq. 48,

one has
xI

V = 2 ug(u) du+x 2 2 (54)

0

and

2
Vr Zf (xI, X2 ).X 2  (55)

V may not vanish identically on a trajectory for f > 0 and g (x I ) / 0 for

x, / 0 . Thus, Eq. 54 indicates asymptotic stability in the large for

(i) f(x 1 ,x z )>o

(ii) g(x)0 for x, / 0 (56)

'x1

(iii) .ug (u) du- co as -x 1 I - 0o

0

(iii) of Eq. 56 with (ii) demands that g(x 1 ) > 0 for x/ 0 . [The

argument starting with Q (f, 0) was essentially given in the previous section].
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B. i + f(x)k + g(x)x = 0 (57)

This is a special case of Eq. 47 but has been included here to

indicate the importance of the choice of state variables while determining

a Liapunov function. In a practical situation the "average" dissipation may

be more significant than the instantaneous dissipation and the Lienard trans.-

formation [4] may be used. Defining

x1

. f (u) du--F(x I ) (58)

;Eq. 57 reduces to

:k = - f (x I ) x l  + x

(59)x = - gx1

where

f(x I )= X (60)

For this case,

Q (,g).= [ fPll + gPl 2 ) fP 1 2 + gP 2 2 "Pl (61)A1IZ1 + gPz?. "Pll -2Pl2

Selecting

[ 11 g 
L(62)0 0
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which is positive semi-definite (or > 0 ) for q, 1 > 0 , it is found that p, 2 = 0

and p = gp?.2  These. conditions are compatible for P2 = constant. Then,

with ql = 2 g , one obtains P2 2 = 1 . Thus,---

xl

V = 25 ug(u) du.+ (63)

0

and

=-2 gfkx =2- gF(x,)x, (64)

Equation 63 indicates asymptotic stability in the large fot

i f F(x 1 )
) (xI ) =  x1 > 0 for xI  0

(ii) g(x I ) > 0 for xI ' 0 (65)

xl

(iii) Y ug(u)du- oo as 1x - co

0

With Eq. 65, 4 will not vanish identically except on the x - 0 trajectory.

Furthermore, Eq. 65 does not demand that the instantaneous dissipation

be > 0 , but only that the "average" dissipation be > 0 As an example of

this, consider

g(x 1 ) = 1

f(x l ) =(x 1 -2)(x,+Z)(x l -/T)(x + ,/ '3) = x1
4 -7x 1 +12

Then

4 2
f x1  7x 15 3 + ,
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which is > 0 for real x 1. Notice f(x1 ) is negative for -2<x 1 < -,/3 and

C. Second-Order Nonlinear.,Feedback System

+ 2 + x x2 V.

Figure 3, Second-Order Nonlinear Feedback System

The system of Fig. 3 may be described by the set of equations

1 1  + 2 (66)

kz = -h(x 1 )x I - f(X2)X z

This may be reduced to the single second-order differential equation

,+ [g (x) + g, (X),x + (l + g(-X) ,5) f (k + g (x) x) k + h (x)x = 0 (67)

.wherex = x

Eq 67 is the standard form of Eq. 47. There are two immediate

objections .to applying the results of A . A perhaps minor objection is that

Eq. 67 contains a derivative of the function g . It would be desirable not

to demand that the nonlinearities be differentiable functions. A more serious

objection and one in fact that prohibits the application of A , is that the

"dissipation" of Eq. 67 is not of constant sign in the vicinity of R = 0
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Examining, Eq. 67 for the case of f, g, h constant, one obtains

R+(f+g):k+(fg+h)x= 0 (68)

The system is thus stable for

(i) fg + h > 0 (69)

(ii) f + g > 0

As has been previously mentioned, one wishes to select the Q(f, g, h) for

the nonlinear system which will be no more restrictive than Eq. 69 when

applied to a linear system.

Q(f, g, h) = 2(pIlg+p 1 2 h P 2 2 h +pl 2 (f+g) Pll
! (70)

L p 2z
h +p 1 2 (f + g) - pll 2(pZ2 f-p Pj ()

As in Eq. 23, the off-diagonal elements of Eq. 70 will introduce undesirable

restrictions on f, g, and h . For f, g, h constant, one could select

10 1f ,h l (71)

and, hence, obtain

P1 2 = P22 f

Pll = P 2 2h +pz(f+g) (72)

qll = 2(pllg +pl 2 h)

If

qll = 4(f+g)(fg4+h) (73)
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then the conditions of Eq. 69 are clearly displayed. With Eqs. 72 anid 73

one finds

P1 1 = 2h+2f(f+g)

P12 = 2f (74)

P 2 2 = 2

For the nonlinear problem, however, since f = f (x 2 ), one is unable

to select p1 1 and p1 2 as in Eq. 74 . Realizing that Eq.. 69 implies that

for g > 0 any f greater thansome minimurn is satisfactory, one may-try

p1 1 = 2h+ Zf (f + g)

P 1 2 = 21 (75)

P 2 2 = 2

where

f = Min [f(x, ) ]  (76)
xZ' 2

Notice that even for f, g,h constants and g < 0 and h>0 , f from

Eq. 69 is not permitted to increase without bound.

With Eq. 75 , 70" becomes

= (h+fg) ,f +2g f_(f-[f..f'l)Z (f _ i(77)

which. is at least -> 0 for

(h +_g)Y Q + g) > > 0 (78)
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since f > f . If one defines

f = Max [f (x 2 )'] (79)
x2

then the system is asymptotically stable in the large for

(i) f g(x i +h(x I )> 0

(ii) [I+ g (x)][fg (x, ),+ h(x) ]> 2(T- 1) > 0 (80)

and X

(iii). jfg(u),+ h (u)]udu- ooas .xj- oo

and 0

xl

V=2 . [Lg.(u) + h.(u)] udu + (ixi + x 2 )2 (81)

0

Eq. 80 reduces to the conditions of Eq. 69 for f constant even with

g =g (x I ) and h= h (x I ) and also permits a negative g (x,) . (ii) of

Eq. 80 may be used to determine the maximum value f (x 2 ) may assume

while still being guaranteed stability by'Eq. 81 . It is clear that the

conditions of Eq. 69 are necessary to allow for the validity of Eq. 80..

Further, notice that it was not necessary to introduce the derivatives of any

of the functions through a Jacobian matrix [5]. This was partially due to

the form of F , i.e., Fij = Fij (x.) only.

As.an example of the above, take

f(x 2+ae a>0

2

g (x1 )= - e

and
h (x,) 6 + Ix, I
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Then f= 2 and fZ + a for a> 0. It is desired to find how large a

maybe taken. Now (_fg + h). > (-2 + 6) = 4>0 and f + g > 2 - 1 = >0

Thus,

(fg + h) (I f+ g)>4

One may select, therefore, from Eq. 80

2 -

4

and, hence,

f = f+3 5

so that stability is assured for 0 < a < 3

IV. THIRD-ORDER SYSTEM

In this section, conditions for the stability of the differential equation

+f (x,kR)R+g(x,5c)+h(x)x= 0 (82)

are considered. This equation can be represented in the standard state vector

form as

' 1 = 2

:k2 = x3 (83)

k3 = - h(x )X1 - g(xl, x2 )xz - f(X1 , xZ, x3 )x3

where x = I



TR40 3 -23-

When f, g and h are constants, the Routh-Hurwitz conditions for

stability are

(i) f, g, h >0
(84)

(ii) f g - h > 0

The conditions for stability of the nonlinear problems to be derived below

are such that they reduce to Eq. 84 when f, g and h are constant.

A. S+ f(*)K + g(k) + x = 0

Using the above notation,

Q(f, g, h.) = 2P 1 3 h P 1 3g+p 2 3h-Pl P 3 3 h+P 1 3 f-P 1 2  7,
P 1 3g+PZ3 h-p 1 1 , 2(PZ 3g-Pl) P 3 3 g+Pz 3f-Pzz'PI 3 1 (85)

P 3 3 h+P 1 3 f-p 1 2  P 3 3 g+p 2 3 f-P 2 2 -P 1 3  2 (P 3 3 f-P 2 3 ) J
The problem at this stage is to determine Q so that it contains in a

readily recognizable form the conditions of Eq. 84 if f, g, h were constants.

One may thus proceed as in Section III-C and attempt to employ a .diagonal

__. Noticing that q2 3 q3 2 contains f(x ), g(x 2 ), and p? 2 it is

possible to make-these terms zero. Thus, one tries

q2? (86)
00 q33
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-Solving Eq. 85 with 86

Pl i P23 h

P12 = P 3 3 h

P1 3

PZ2 P3 3 g + P2 3 f 
(87)

q' 2  2 (P 2 3 g - P 3 3 h.)

33 2 (p 3 3f - P 2 3 )

Selecting

q2 2  2 (mg - h)

and (88)

q 3 3 = 2 (f -m)

where m is a constant, then

and 23 (89)
P3 3 = 1

Since Q must be positive definite, it is necessary that

(i) L-m> 0

and (90)

(ii) m g -h > 0

where

f= Min f (x 2 ) ] (91)

and 2

= Min [g (x 2 ) . (92)
x2
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[Equality is not permitted for both (i) and (ii) of Eq. 90] . m may be selected

to maximize

q = (f- m) (mg-h) (93)

or
fg + h

m = (94)

With Eq. 94, Eq. 90 reduces to

MI&- h >0
2g -

(95)

(ii) - > 0
2

Thus, for Q > 0 , it is necessary that

(i) > (t:= (96)

(ii) _Ig - h > 0

For (ii) of Eq. 96 to hold for h = 0, one must also have £> 0 . Taking

h > 0 , it is assured that m > 0 which is required by p, 1 
= rnh

In summary, the system is asymptotically stable in the large for

(i) f,j, h > 0
(97)

(ii) .1L- h>'O

where x2

V mh 1
2 + 2hxIx 2 + 2 [g(u) +m f(u)] udu

0

++ 2mxzx 3 + X3 (98)
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and m is given by..Eq. 94. Further,

v > x' .x (99)

where

h ( + mf) m (100)

0m I

which is positive definite. With Eq. 97, V may not vanish identically ex-

cept on the x F 0 trajectory. For f and g constant, conditions Eq. 97 are

identical to those of Eq. 84.

B. "+ f(*)k + g(') K + h(x) x 0

This case is to be identical to that of A , except here h is not a

constant but h = h (x 1 ) . If Eq. 98 were independent of h, then it would also

be a Liapunov function for -this .case. However, Eq. 98 is a function of h

but fortunately only, in what corresponds to the pl xl 2 term and the

P1l 2zX1 x2 term (taking m as constant). A modification of these terms may

be attempted in a -manner. that. will not drastically alter the Q of A .

By examining Eqs. 85 and 87 , it is clear that the proper generalization
2

of the p3,x2 term is to replace it as before by

x

2 5 Pl 1 (u) u du

0
since it came from Pl = P2 3 h . For this case .then, one might try this as

the only. change taking
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Xl x2

V = 2m, h(u)udu+ 2h(x)X 1 x 2 + 2Ug (u) + mf (u) ) u du

0 0 (101)
2

+ rex 2 x3 + X3

It is clear that m has to be redefined from Eq. 94 for it is required to

be constant.

Trying'Eq. 101 , one obtains

r = -x'Qx (102)

whe r.e

0= 0 0 0 7

0 2 (mg -H) 0 (103)

00 2(f - m)

H(x 1 ) h(x 1 ) x 1

and HI dH (104)

-dx (105)

Thus, for Q > 0 even in the most re.strictive case, it is necessary that

(i) -L - m > 0
and (106)

(i) mj-Wl > 0

where

Max [H' (x ] (107)Xl

Here again equality is not permitted for both (i) and (ii) of Eq.106. If m is

selected as in A to maximize the product of (i) and (ii) of Eq. 106, then

M =. (108)
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With Eqs. 106 and 108 , following A , for 0> 0 , it is necessary that

(i) g > 0 
(109)(ii) i&-W > 0

If (ii) , of Eq. 109 is tohold for h- 0 , one must have f>0 . Here H->0

guarantees an m > 0

With m defined by Eq. 1.06 and taking V of 'Eq. 101 as the Liapunov

function, 
1

V > YH(u),du+ -2 H(XI)X 2 + Ex 2 +mfX 2 +Zx 2 x3 +x3 (110)

0

or

Lo+ rXl)2 x-l - [ r-H'(u)]h(u) u du •

11 x3] (111)

,WithEq. 109, m>0, and h(xl I)> .forx I /0, V.ofEq. 1II is>0

for 112EII / 0

To .s.ummarize, the system is asymptotically stable in the large for

(i) h (x, > 0 for x, / 0

(ii) f, gH > 0 (112)

(iii) fg - H- > 0
x
1I

(iv) SH(u) du - co as Ix ljj 00

(iv) of Eq. 112 insures that V-oo as J ox -- o. Also notice that ir may

only vanish identically on the x _ 0 trajectory.

$/
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C. TheGeneralCase '+f(x, c,') R+g(x,k) i+h(x)x = 0

It is desirable that the results of this section include as a special

case the results of the sections A and B . This implies that a Liapunov

function must be obtainedwhih would reduce identically to that of Eq. 101

for f = f (x 2 ) and g _= g (x 2 ) . To this end, one anticipates a redefinition of

m of Eq. 108 and a change in the integral involving f and g . Thus try
x I  x 2

V= 2mS H (u)du + 2H(x) X+ 2 [ A (u) + m? (u) ] u du

0 0 (113)

+.2m x 2 x 3 + x3

where N (x 2 ) and ? (x,) are to be determined in a manner to reduce

identically to g and f when they are functions of x2 only.

Now

V = x' Q x (114)

where

Q 0 0 0

2 (mg - H') (g = 9) + m (f = fj (115)
(g") + m (f -) 2 (f-m

To insure that Q > 0 , one demands that

(i) mg - '> 0

(ii) f - m > 0 (116)
and A [f ] 2

(iii) q=4 (mj- )_-m) -Max [(g - g)+mIf- f) >0
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where here the =means the absolute minimum of the particular function,and

TFI was definied in Eq.107. If Eq.l16' is satisfied, then 0 > 0

(iii) of Eq. 116 is the requirement that was not present in the previous

sections. This condition will be the least restrictive if one selects 9and f

so as to minimize Max [(g - )+ m (f - f) ].With the stipulation on g and
Af of the firs~t paragraph of C ,it is natural to make the following definitions.:

T(X 2 ) Max [f (x, ,x 2 , x 3 )]
xl~

f(x, Min f (x, ,x 2 ,x 3 )]
xlx x3

S(x 2 ) + f (x 2 )
f (x 2 )

(117)

f ~ xMax3  f(xi,?x x 3 )(X j

or 
2 xI)x3 32

f =Max j~9fx)

f Min [(x1
x 2

The same notation is adopted for g (xl , x2 ) , e. g. g ( x2) Max gxxZ
xl1

to define j (x2 ), Y (x ) , (x 2 ), and g . Ii' has been defined previously.

With the above, (iii) of Eq. 116 requires that

q 4 (mg ~) . m) -(g + mf )2 > 0(18
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If now m is selected to maximize q of Eq. 118 , it is found that

2fg& + 2H-f g
m -+. (119)

f + 4

With m taken as in Eq. 119 , it is found that q > 0 requires

" g > (120)

where

- gVf_-+f g (g+ )+g g (121)

To szirnnrarize,the following conditions insure that Eq. 82 is

asymptotically stable in the large:

(i) h (x 1 ) > 0 for x1 / 0

(ii)f, g, H I > 0

(122)
(iii) f.- H> e> 0

x
1I

(iv) H (u)du- oo as Ix1.- O

where e is defined in Eq. 120 and the Liapunov function is defined in

Eq. 113 with m given by Eq. 119 . With Eq. 122 , one can show as in B

that V> 0 for IIxII / 0 since Eq. 122 implies m > 0 . Further, r may

only vanish identically on the x = 0 trajectory.

The conditions for stability of Eq. 122 and C in Eq. 121 may appear

complicated. The following four cases , however, indicate that these
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conditions may be reduced to simpler forms for..specific types of. nonlinearities

and do contain the results of A and B

1. Take f, g, and h as constants. Then .f -= g a c- 0 , and.Eq. 122

reduces to the Routh-Hurwitz conditions of-Eq. 84.

2. Take f constant, g = g (k), and h-=h(x). Then fg E 0,

and Eq. 122 becomes Barbashint's result [6]

3. Take f =f (k) , g = g(k) , and h = h (x) . Then c_0 and Eq. 122

is just Eq. 112 of B . For h constant, Eq. 122 becomes Eq, 97

of A

4. Cases 2 and 3 considered above require conditions similar to

those of a linear.system. If g = g (k) , f = f (x).'), and

h = h (x) an c may be determined satisfying (iii) of Eq. 122.

Since, in~this case, g 0 and f = f

2f -- -f

and the condition reduces to

+

[Numerical example: assume , 7 , andMT= 4 so that

fg= '=3>0. Taking c= 2.99 itis.seenthat 1<f (xP R)< 3. 99

insures stability.]
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Consider the following example which indicates an application of

the most general results. Assume

(x 1 , X2, x3 ) 3 ae [ + +1+ x, 1{,a

g(x I x ) 6 + be
1

+ b+2
x 2  + 2

h(x, D - G + x, eil (I+
x-

forx I > 0 and h(-x 1 ) = h (x,)

It is desired to determine the range of a and b so that stability is assured.

Using the previous definitions
2

-x2 a

T(x)=ae + 1 + aI xzl + 1
f(x ) 1

a (x e j + 1(2z 2 -+ x2 1 + I

2 -x z 2i
f = Max + [ = a

x2  x21 I
f=l

2
(x 2  6 + bex2 + 2b

x 2 + 2
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2 = 6

9 - + A! i e
g-X2  = 6+2 +bx -

g =Max-[e + T = b
x2

.t = 6

Also

H (m.1)  x - 3 [1 - (1 + xl) e 1  ] forx 1 > 0

and

H( - xl) - H(Xl)

H' (,) 1 - 3x e 'for-x > O "

and

H' ( - x ) H' (x
Rr 1Trr= 1

Thus, fv.- IW= 5 > 0 and one may select c < 5 Then with Eq. 121,

2 2a + 7ab +66b <2Z5
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The region of allowable a and b is shown in Fig. 4.

3

Region of allowable a and b

(i) a, b>O
(ii) a2 + 7ab + 6b 2 <25

a+ 7ab + 6b2 = 25

Figure 4. Region of Permissible Values of a and b

For example, one may take

1. a = 0 and b< 5

2. b=O and a<5

3. a=b < 5

All the conditions of Eq. 122 have been obeyed. Notice that HI (x,) is

negative for certain values xI , e.g., X = 1.
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D. 'R+ f.+ g (x) k+ hx = 0 (123)

In this section, f and g are constants, Of course, Eq. 123

may be considered as a special case of C . However, less.stringent

conditions will be derived for stability than those given by Eq. 122 for this

special case.

The following state vector form is taken which niay be considered as

a logical extension to Eq. 123 of the Li~nard transformation of Section III - B

for a second-order system:

l = 3
4 - hyl (124)

4 - G(y + y 2 fy

where

YI x

and Y

G(yl) g g( u) dui (125)
0

Proceeding as in A

G~1  GG
hP12 + -, P 1 3 I hp22+ -jP 2 3 -.P1 3  hP2 3 + P3f3-Pl

hP?2 2 -P 2 3 -Pl3 2P3  fpZ 3-P1 2 -P3

hP23+iG P33+fp1 3 -p11 fP23-p1 2-P33  2Z(fp 3 3 -P 1 3 )

(126)
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G(y 1 )

Notice that for g constant, - gYJ

One may select

0=2(f-G-h) 0 0L 0 o (127)
0 0 0

so that

yl Z = -

P22 =h P 1 3

P3 3  1 P2 3 = 0

and, hence,
Ylf~y 1

2 2 f 22V= f 2 +2 G(u)du-2yly 2 +--y 2  + 2fy 1y 3 + y3  (129)

0

or Yl

S2 G(U)f h 2 2
[f J u uu Yl ) + (fYI + Y3 ) (130)

0

Thus, to summarize, Eq. 123 is asymptotically. stable in the large for
G(y 1 )

(i) f, Yl ,h > 0 for yl / 0

Gy1 )(ii) f -S h > 0 (131)
Yl

Yl

(iii) [f G(u)- h ] udu-;co as Iy y - co
0
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Further, V> 0 for l. [I /0 and that with (iii) of Eq. 131, V -- o as

IL! .00 Also, with Eq, 131, V may only vanish identically on the

y 0 trajectory.
G(y 1 )

It is required by Eq. 131 that only be > 0 and not that
yl

g (yl),> 0 . As an example of this, consider

f =36

g (yl) (y -2) (, + 2) ( -/3) (y, + /T ) -y 4 . 7y 1
2 + 12

h = 186

Then G(y) y1
4  7y,

- + 12
OJ 5 ( yl) 1.87

which is > 0 for yl real. Further, the minimum of y is 187

G(y 1 ) 187
Thus, f - -h>f h--- 1h= 1>0. All the conditions of Eq. 131

are, hence, satisfied.
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V. CONCLUSIONS

The various results presented throughout this report were derived

by considering a CLF (or a modification of the CLF ) for a related linear

.system. All the results for the nonlinear equations reduce to the usual

* Routh-Hurwitz conditions when the nonlinearities are assumed constant.
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